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Abstract The measurement of the non-linearity of radiation thermometers is
important in the realization of ITS-90 above the silver point and in the calibration of
primary or secondary radiation thermometers using multiple fixed points both above
and below the silver point. A non-linearity function is usually derived, enabling cor-
rection of the measured signals. Uncertainties in this non-linearity function propagate
to the uncertainty in the determination of an unknown temperature. Since the same
non-linearity function is used both during calibration and in subsequent use of the
thermometer, there is a high degree of correlation between the uncertainties in the
corrected calibration signals and the corrected in-use signals. While these correlations
obviously lead to zero uncertainty at the calibration points, it is difficult to determine
the correlation coefficients for temperatures away from these points. This article sets
out a mathematical framework, based on interpolation theory, for propagating the
uncertainty due to non-linearity in which correlation is easily included. The method is
illustrated for a thermometer realizing ITS-90 up to 3,000◦C based on one fixed point
(silver, gold, or copper), and also for alternative realization schemes based on two
or more fixed points. The total non-linearity uncertainty for the multipoint schemes
is considerably lower than for the ITS-90 method. The mathematical framework can
also be applied to secondary calibrations below the silver point, where non-linearity
is typically more problematic for the detectors used in this temperature range.
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1 Introduction

Above the freezing point of silver (961.78◦C), ITS-90 is defined in terms of the spectral
radiance of blackbodies and is realized using radiation thermometers. Temperatures
are calculated from the ratio of the signal measured at the unknown temperature to
that at either one of the silver, gold, or copper points, along with a determination of
the relative spectral responsivity of the thermometer. Secondary realizations of ITS-90
below the silver point are also carried out, without measuring the spectral responsivity,
by interpolating signals measured at multiple fixed points with a calibration equa-
tion. With the recent development of high-temperature fixed points based on metal–
carbon [1] and metal-carbide–carbon eutectics [2], this interpolation scheme may, in
the future, be adopted as a primary method above the silver point [3].

In all of these methods, it is important to characterize the non-linearity in the sig-
nal response of the thermometer in order for its reading to faithfully follow Planck’s
law. There are well-established techniques for determining a radiation thermometer’s
non-linearity that enable corrections to be applied to the measured signals [4–9]. Appli-
cation of these corrections, however, results in a degree of uncertainty which impacts
on the uncertainty in the measured temperature. This non-linearity uncertainty has
been identified as one of the dominant components in the realization of ITS-90 [10].

Determining how uncertainties in the correction for non-linearity propagate to
uncertainty in a measured temperature is complicated by the use of the same data
to correct signals during both calibration and subsequent use of the thermometer (for
ITS-90 realization, calibration here refers to the measurement of the signal at the ref-
erence fixed point). This practice introduces complicated correlations into the uncer-
tainty analysis. Methods for dealing with this non-linearity uncertainty are considered
in this article. For the sake of clarity, all other uncertainty components are assumed to
be zero.

2 Calibration Schemes

The signal, S(T ), measured by a radiation thermometer at temperature T is given by
the integral,

S(T ) =
∞∫

0

R(λ)Lb(T, λ)dλ, (1)

where R(λ) is the spectral responsivity of the thermometer (including all geometrical,
optical, and electrical factors) and Lb(λ, T ) is the spectral radiance of a blackbody
at temperature T and wavelength λ, given by Planck’s law. In order to simplify the
uncertainty analysis, Eq. 1 will be modeled by the algebraic function,

S(T ) = C

exp
(

c2
AT +B

)
− 1

, (2)
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where c2 is the second radiation constant and the parameters A, B, and C are all related
to the thermometer’s spectral responsivity [3]:

A = λ0

(
1 − 6r2

)
, (2a)

B = c2

2
r2, (2b)

C = c1

λ5
0

(
1 + 15r2

)
H. (2c)

In these equations, λ0 is the mean wavelength of the spectral responsivity; r is the
relative bandwidth of the spectral responsivity, r = σ/λ0, where σ is the standard devi-
ation and is directly proportional to the full width at half maximum; H = ∫ ∞

0 R(λ)dλ

is the area under the spectral responsivity curve; and c1 is the first radiation constant.
Note that the determinations of both λ0 and r require knowledge only of the relative, not
absolute, spectral responsivity. Equation (2) is the Sakuma–Hattori equation [11,12],
and its accuracy has been well established [13]. Equations (2a–2c) for its parameters
are valid when r � 1, in which case Eq. 2 is in error by only a few millikelvin up
to 3,000◦C. This error is small compared to other uncertainty components, including
that arising from non-linearity, and can be considered negligible. Furthermore, at the
wavelengths of 650 and 900 nm, normally used to realize ITS-90, the Wien approxi-
mation to Eq. 2, namely, neglecting the −1 in the denominator, introduces negligible
error up to 3,000◦C.

While Eq. 2 has traditionally been used as an interpolation equation, with the param-
eters A, B, and C determined by curve fitting to at least three temperature-signal data
points, it need not be restricted to this. The equation is equally valid for all methods
of determining A, B, and C . Thus, the ITS-90 primary method of calculating tem-
perature through signal ratios and integration of Eq. 1 may be recast directly into
the application of Eq. 2 by first determining A and B using Eqs. 2a and 2b from a
measurement of the relative spectral responsivity, and then determining C using Eq. 2
based on a measurement of S(Tref) at the reference fixed point. This single fixed-point
method is referred to as an n = 1 calibration scheme. Similarly, n = 2 schemes are
valid [14], whereby the bandwidth, σ , of the spectral responsivity, for example, is first
estimated, then two fixed points are used to determine λ0 and H , thereby allowing
A, B, and C all to be determined. The well-known n = 3 interpolation scheme and
n > 3 least-squares scheme allow Eq. 2 to be implemented without any knowledge
of the spectral responsivity. Although not discussed in this article, Eq. 2 is also valid
for an n = 0 thermodynamic determination of temperature in which λ0, r , and H are
measured directly.

Non-linearity affects each of the n ≥ 1 schemes during measurement of each of
the n fixed-point signals, as well as during subsequent measurement of the signal at
the unknown temperature. Propagation of uncertainty in the non-linearity corrections
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of these signals for the cases n = 1, n = 2, n = 3, and n > 3 will be analyzed below.
First, a non-linearity function is defined.

3 The Non-linearity Function

It is assumed that non-linearity in a radiation thermometer’s signal is largely caused by
non-linearity in the detector’s response, with minimal contribution from the amplifier
or changes in gain. The non-linearity in the signal, S′, measured by a radiation ther-
mometer can, thus, be corrected by determining a continuous non-linearity function
η(S′), such that the linearized signal, S, is simply given by

S = η(S′) × S′. (3)

There are two classes of methods used to determine the non-linearity function, “dual
aperture” (DA) [4,5] and “superposition” (SP) [6,7,9] methods, both of which sample
the non-linearity at a number, m, of discrete measured signal values spanning the range
of signals for which the thermometer is to be used. The continuous function η(S′) can
then be characterized by interpolating (or least-squares fitting) these points, η j for
j=1 to m, with an assumed functional form.

3.1 Dual Aperture Methods

In the DA methods, signals S′
A and S′

B from two sources are measured individually and
then compared to the signal S′

A+B , measured by optically combining the two sources.
The measured non-linearity for this series of measurements is

η′
A+B = S′

A + S′
B

S′
A+B

. (4)

Note that this measured non-linearity (denoted η′) is not the true non-linearity because
the signals S′

A and S′
B are themselves subject to non-linearity. The cumulative nature

of the DA methods must be unraveled to determine the true non-linearity values η j .
To simplify the analysis, it is assumed that the two individual signals are arranged

to be equal (S′
A = S′

B ≡ S′
0 and S′

A+B ≡ S′
1) so that this DA method becomes a

flux-doubling method. The value of S′
0 is typically chosen to be close to the lowest

operating signal, and is successively doubled up to the highest operating signal. The
measured non-linearity at the first doubling is

η′
1 = S′

0 + S′
0

S′
1

= 2S0

S′
1η0

,
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where S0 is the linearized signal corresponding to S′
0 and η0 is its true non-linearity

value, which is unknown. Flux-doubling proceeds by doubling the signal S′
1 to give

S′
2, and so on. In general, after k doublings, the measured non-linearity is

η′
k = 2k S0

S′
kη0

k−1∏
j=1

η′
j

. (5)

Recognizing that 2k S0 = Sk , it can be seen that Eq. 5 gives the true non-linearity for
the measured signal S′

k as

ηk = η0

k∏
j=1

η′
j . (6)

Thus, each non-linearity value simply accumulates geometrically from the previous
value. The problem of Eq. 6 containing the unknown non-linearity, η0, will be dealt
with below.

3.2 Superposition Methods

The SP methods are combinatorial methods in which a number of different flux levels
are generated using a series of filters [6,7,9]. The signal measurements are combined
with a model of the non-linearity in such a way that a series of equations can be set
up to solve for the unknown flux levels, the filter transmissions, and the parameters of
the non-linearity model.

The non-linearity value at each signal level is then given by

η j = K
φ j

S′
j
, (7)

where φ j is the solved value of the flux corresponding to the measured signal S′
j and

K is an unknown proportionality factor between flux and signal imposed by the design
of the radiation thermometer. Thus, as for the dual aperture methods, the non-linearity
function given by Eq. 7 can only be determined, without additional information, up to
a multiplicative factor.

3.3 Radiation Thermometry Measurements on ITS-90

Accurate thermodynamic measurements require the determination of η0 or K in Eq. 6
and Eq. 7, respectively. However, for measurements on ITS-90, this is not the case.
The n = 1 primary and n > 1 secondary determinations of ITS-90 are not affected by
lack of knowledge of η0 or K because these factors are absorbed by the C coefficient
in Eq. 2. Thus, for all purposes other than n = 0 thermodynamic measurements, the
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Fig. 1 Non-linearity data (circles) generated with Eq. 6 from measured signals using the flux doubling
technique, and the fitted non-linearity function given by Eq. 9 (line). Fitted parameters are a = −2 × 10−7

and c = 1.27

non-linearity functions of Eqs. 6 and 7 can be redefined by setting η0 = K = 1. This
will be implicit in the remainder of this article.

3.4 Functional Form

The discrete non-linearity data points, η j , obtained from either Eq. 6 or 7 can be fitted
by a functional form to allow non-linearity corrections to be made for any arbitrary
measured signal. A relatively simple form suggested for silicon detectors [5] is

η(S′) = 1 − (
a + bS′c) , (8)

where a, b, and c are adjustable parameters. If a flux-doubling method is used, then
an equivalent form of Eq. 8 is

η(x) = 1 − a
(
1 − 2cx) , (9)

where x = log2
(
S′/S′

0

)
is the effective number of flux doublings from the initial

signal S′
0. Equations (8) and (9) are directly related through b = −a/S′c

0 .
Experimental data for an InGaAs detector also fit Eq. 9, as illustrated in Fig. 1. Here,

the initial signal S′
0 corresponds to the zinc point, and the values of the parameters are

a = – 2 × 10−7 and c = 1.27.

4 Propagation of Uncertainty

The Sakuma–Hattori equation (2) can, in principle, be written explicitly in the form,

S = S(T ; λ0, r; T1, T2, . . . , Tn, S1, S2, . . . , Sn), (10)
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where (T1, S1), (T2, S2), . . . , (Tn, Sn) are the n calibration points and T is the un-
known temperature (for the n = 2 scheme, λ0 would not appear in the parameter list,
and for n ≥ 3, neither λ0 nor r would appear). The propagation-of-error equation is
obtained by differentiating Eq. 10 with respect to all of the measured variables. How-
ever, as mentioned in Sect. 1, in this article all errors other than those due to corrections
for non-linearity are assumed to be zero, so the propagation-of-error equation is

dS = ∂S

∂T
dT +

n∑
i=1

∂S

∂Si
dSi , (11)

where the dSi values are the errors in the signals at the calibration points after cor-
recting for non-linearity, and dT is the error in the unknown temperature. The ∂S/∂Si

factors are sensitivity coefficients, whose forms depend on the value of n. The fac-
tor ∂S/∂T is the derivative of the Sakuma–Hattori equation, which under the Wien
approximation is

∂S

∂T
= c2

λT T 2 S, (12)

where λT is the limiting effective wavelength evaluated at T , given by [15]

λT = A

(
1 + B

AT

)2

. (13)

The quantity of most interest in Eq. 11 is dT , the error in the measured temperature,
which by rearrangement is given by

dT =
(

dS −
n∑

i=1

∂S

∂Si
dSi

)/(
∂S

∂T

)
= λT T 2

c2

(
dS

S
−

n∑
i=1

∂S

∂Si

Si

S

dSi

Si

)
. (14)

We can now recognize the first term on the right-hand side of the first equality as the
signal error when the thermometer is used (after calibration) and the other n terms as
the errors arising from the calibration signals at the fixed points. The second equality
expresses the signal errors as relative values. These are simply related to the error in
the non-linearity function of Eq. 3 by

dS

S
≈ dS

S′ = dη(S′). (15)

Thus, the error in Eq. 14 can be written directly in terms of the errors in the non-
linearity function. The sensitivity coefficients ∂S/∂Si for each value of n are required
to completely specify Eq. 14. These are given below.
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4.1 The n = 1 Scheme

Reference [16] gives general methods for calculating sensitivity coefficients for inter-
polation and least-squares fitting. However, for the n = 1 ITS-90 scheme, it is easier
to simply solve for the C coefficient in the Sakuma–Hattori equation (2) based on the
signal measurement, S1 = Sref , at the reference fixed point and then differentiate the
resulting equation:

∂S

∂S1
= S

S1
. (16)

Substituting this into Eq. 14 with n = 1, and using Eq. 15, gives

dT = λT T 2

c2

(
dS

S
− dS1

S1

)
= λT T 2

c2

[
dη(S′) − dη(S′

1)
]
. (17)

Note that dT = 0 when S′ = S′
1. Of course, in general, the errors dη(S′) in the non-

linearity function are unknown, so Eq. 17 must be turned into an uncertainty equation.
Following the GUM [17], this is

u2(T ) =
(

λT T 2

c2

)2 [
u2 (

η(S′)
) + u2 (

η(S′
1)

) − 2r(S′, S′
1)u

(
η(S′)

)
u

(
η(S′

1)
)]

,

(18)

where r(S′, S′
1) is the correlation coefficient between the uncertainties in the non-

linearity function evaluated at S′ and S′
1. While this correlation coefficient is clearly

equal to 1 when S′ = S′
1, so that u(T1)= 0 at the reference fixed point, as mentioned

above, at other temperatures it is generally not easy to determine the value of r . This
becomes even more difficult when n > 1. Note that if the non-linearity function has
been determined using a dual aperture method, and if the initial signal corresponds
to the reference fixed point (S′

0 = S′
1), then the uncertainty component u

(
η(S′

1)
)

is
zero for a non-linearity function given by Eq. 9 since η(S′

0) = 1 by definition. This
simplifies Eq. 18 and eliminates the correlation coefficient problem. This problem
re-emerges, however, for n > 1.

4.2 The n = 2 and n = 3 Schemes

For n = 2 and n = 3, the interpolation theory methods of Refs. [16] and [18] give

∂S

∂Si
= S

Si

λTi

λT

(
Ti

T

)n−1

L(n−1)
i (T ), (19)
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where L(n)
i (T ) are Lagrange polynomials in T of order n. Thus

L(1)
1 (T ) = T − T2

T1 − T2
, L(1)

2 (T ) = T − T1

T2 − T1
, (20)

and

L(2)
1 (T ) = (T − T2)(T − T3)

(T1 − T2)(T1 − T3)
, L(2)

2 (T ) = (T − T1)(T − T3)

(T2 − T1)(T2 − T3)
,

L(2)
3 (T ) = (T − T1)(T − T2)

(T3 − T1)(T3 − T2)
. (21)

The Lagrange polynomials have the property that Li (Tj ) = δi j for all orders. Note that
the Wien approximation to the Sakuma–Hattori equation has been used in deriving
Eq. 19. The full Planck version would require replacing the Lagrange polynomials
with more complicated functions [19], but for thermometers operating at 650 or 900
nm up to 3,000◦C, the resulting uncertainty is not significantly different. The propa-
gation-of-error equation (14) becomes

dT = λT T 2

c2
dη(S′) −

n∑
i=1

λTi

c2
T n−1

i T 3−n L(n−1)
i (T )dη(S′

i ). (22)

As for n = 1, dT = 0 at all the calibration points, since Li (Tj ) = δi j . The propagation-
of-uncertainty equation corresponding to Eq. 22 is formed in a similar way to Eq. 18.
For n = 2, this contains three quadrature terms and three correlation terms, while
for n = 3 there are four quadrature terms and six correlation terms. Writing out the
propagation-of-uncertainty equation in full, it is easily seen that at each of the calibra-
tion points the total uncertainty due to the non-linearity is zero. However, away from
the calibration points, there are again unknown correlation coefficients.

4.3 The n > 3 Scheme

When n > 3, solving for the A, B, and C parameters of the Sakuma–Hattori (2)
requires the use of least-squares methods. Reference 16 again provides a method for
calculating the ∂S/∂Si sensitivity coefficients, but they are too complex to write down
in a compact algebraic form and are more conveniently calculated numerically.

4.4 Elimination of Unknown Correlations

The problem of unknown correlation coefficients occurring in the propagation-of-
uncertainty equations discussed above arises because of the three-step mathematical
process adopted: first the discrete non-linearity data points are measured; then a contin-
uous non-linearity function is derived by curve fitting; and finally the uncertainties in
this fitted curve are propagated through the Sakuma-Hattori equation to the unknown
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temperature. The correlations are introduced in going from the second to third step.
We can eliminate these correlations by bypassing this step and propagating the uncer-
tainties in the discrete non-linearity data directly to the Sakuma–Hattori equation.

In order to do this, we need to express the error in the non-linearity function, dη(S′),
directly in terms of the errors in the discrete non-linearity measurements, dη j . Using
interpolation theory [16,20] again, this can be written as

dη(S′) =
m∑

j=1

dη j f j (S′), (23)

where f j (S′) are the required sensitivity coefficients. These are relatively easy to
calculate, but for most realistic non-linearity functions their form is somewhat com-
plex to write down. Substituting Eq. 23 into Eq. 14 gives

dT = λT T 2

c2

⎛
⎝ m∑

j=1

dη j f j (S′) −
n∑

i=1

∂S

∂Si

Si

S

m∑
j=1

dη j f j (S′
i )

⎞
⎠

(24)

=
m∑

j=1

dη j

[
λT T 2

c2
f j (S′) −

n∑
i=1

λT T 2

c2

∂S

∂Si

Si

S
f j (S′

i )

]
.

The advantage of Eq. 24 is that the entire factor in square brackets is the sensitivity
coefficient, c j , for the error in the measured non-linearity value, dη j , when propagated
directly to the unknown temperature. The propagation of the uncertainty equation will
only contain correlation terms between the discrete non-linearity points, r(η j , ηk), for
which the correlation coefficients are easily determined. Following the GUM [17],

u2(T ) =
m∑

j=1

m∑
k=1

c j ckr(η j , ηk)u(η j )u(ηk), (25)

where

c j =
[

λT T 2

c2
f j (S′) −

n∑
i=1

λT T 2

c2

∂S

∂Si

Si

S
f j (S′

i )

]
. (26)

For the n = 1, 2, and 3 schemes, the sensitivity coefficients are explicitly

n = 1 : c j = λT T 2

c2

[
f j (S′) − f j (S′

1)
]
, (27)

n = 2 : c j = T

c2

[
λT T f j (S′) −

2∑
i=1

λTi Ti L(1)
i (T ) f j (S′

i )

]
, (28)
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n = 3 : c j = 1

c2

[
λT T 2 f j (S′) −

3∑
i=1

λTi T
2

i L(2)
i (T ) f j (S′

i )

]
. (29)

In all cases, the factor in square brackets in each sensitivity coefficient is the
interpolation error resulting from an (n − 1)th polynomial interpolation (Lagrange
interpolation) through the function defined by the term before the minus sign [18].
Each sensitivity coefficient c j , therefore, has n zeros at the fixed-point temperatures.

For example, for n = 3,
∑3

i=1 λTi T
2

i L(2)
i (T ) f j (S′

i ) is a quadratic interpolation of
the function λT T 2 f j (S′), so the difference has zeros at T1, T2, and T3. This is ex-
actly what was expected from Eq. 22 when the correlations were considered, but
Eqs. 25–29 give all the additional information about the propagated uncertainty be-
tween the fixed points. When n > 3, there are still three zeros in the propagated
uncertainty, since there are three free parameters in the Sakuma–Hattori equation,
which occur at three points within the fitted temperature range, but not necessarily at
the fixed-point temperatures.

5 Example

To illustrate the use of Eqs. 25–29, this section considers a narrowband 650 nm
thermometer whose non-linearity function has been measured using the flux-doubling
method with S′

0 corresponding to the copper point. The non-linearity uncertainty is
propagated over the temperature range from 1,000 to 3,000◦C for each of the n = 1, 2,
and 3 calibration schemes. It is assumed that the non-linearity function follows Eq. 8
with the fitted value of c equal to 0.5 (note, the values of a and b are unnecessary to
propagate the uncertainty). This value of c is consistent with the experimental data in
[5] for a silicon photodiode.

It is also assumed that the uncertainty in each measured non-linearity point is
u(η′

j ) = 3 × 10−4 for j =1–14 (m = 14 flux doublings are required to reach 3,000◦C
from the copper point at 650 nm), corresponding to the “normal” accuracy value given
in [10]. The uncertainties in the true non-linearity points calculated from the measured
points using Eq. 6 are u(η1) = 3 × 10−4 and

u(η j ) =
[
u2(η j−1) + u2(η′

j )
]1/2

for j = 2 to 14. (30)

From Eq. 6 and Ref. 17, the correlation coefficients between each of these uncertainties
is

r(η j , ηk) ≈
{√

j/k for j ≤ k√
k/j for j > k.

(31)

Figure 2 shows each of the 14 f j (S′) functions for Eq. 8 that appear in the sensitivity
coefficients of Eq. 26, where the horizontal axis has been converted to the equivalent
temperature. Each curve is zero at the temperature corresponding to S′

0. Figure 3 gives
the full uncertainty, given by the square root of Eq. 25, for each of the calibration
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Fig. 2 The 14 f j (S′) functions for Eq. 8. The horizontal axis has been converted from detected signal to
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Fig. 3 Propagated uncertainty due to non-linearity for the n = 1, 2, and 3 calibration schemes. The cal-
ibration temperatures are: T1 = 1084.62◦C for n = 1; T1 = 1084.62◦C, T2 = 2776◦C for n = 2; and
T1 = 1084.62◦C, T2 = 1953◦C, T3 = 2776◦C for n = 3

schemes. The calibration temperatures for each scheme are evident from where the
curves go to zero. The shapes of these curves depend somewhat on the assumed form
of the non-linearity function and the number of flux-doublings involved. However, in
general, the n = 2 and n = 3 secondary schemes show a clear advantage over the
primary n = 1 scheme in minimizing the uncertainty due to non-linearity, since the
multiple fixed points tend to constrain the uncertainties within the interpolation region.

6 Conclusion

A mathematical formalism has been presented that allows uncertainties in the
corrections for signal non-linearity to be propagated directly to the measured tem-
perature. Some recently published results from interpolation theory have formed an
essential part of this formalism, allowing correlations between calibration uncertainties
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and in-use uncertainties to be included in a simplified manner. Modeling of the signal
response of a radiation thermometer with the Sakuma–Hattori equation has allowed
analytic expressions to be derived for the uncertainties for each of the various cal-
ibration schemes. This enables easy comparison among the schemes and possible
optimization of uncertainty through judicious choice of thermometer and calibration
parameters. The formalism presented here can also be extended to include all other
uncertainty components in the present and future implementations of the radiation
thermometry part of the International Temperature Scale.
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